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Real Analysis II

Solution to Exercise 5

Standard notations are in force. * are for math-majors only. ? are optional.

(1) Let f ∈ L1(R1) and g ∈ Lp(R), p ∈ [1,∞].

(a) Show that Young’s inequality also holds for p =∞.

(b) Show that equality can hold in Young’s inequality when p = 1 and ∞,

and find the conditions under which this happens.

(c) For p ∈ (1,∞), show that equality in the inequality holds only when

either f or g is zero almost everywhere.

(d) For p ∈ [1,∞], show that for each ε > 0, there exist f ∈ L1(R) and

g ∈ Lp(R) such that

‖f ∗ g‖p > (1− ε)‖f‖1‖g‖p .

Solution.

(a) It is obvious that fixing x, f(x− y)g(y) is integrable w.r.t. y and

∣∣ ∫ f(x− y)g(y)dy
∣∣ =

∫
|f(x− y)g(y)|dy

≤
∫
|f(x− y)|dy‖g‖∞ = ‖f‖1‖g‖∞ <∞,∀x ∈ R.

Hence ‖f ∗ g‖∞ ≤ ‖f‖1‖g‖∞

(b) For instance if g is constant function equals to 1 and f is nonnegative,

then ∀x ∈ R

|
∫
f(x− y)g(y)dy| = |

∫
f(x− y)dy| = ‖f‖1.
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we see that ‖f ∗g‖∞ = ‖f‖1 and the Young’s inequality holds for p =∞.

For p = 1, if f = g ≥ 0, then

‖f ∗ f‖1 =

∫ ∣∣∣ ∫ f(y)f(x− y)dy
∣∣∣dx =

∫ ∫
f(y)f(x− y)dydx

=

∫ ∫
f(y)f(x− y)dxdy

= ‖f‖1
∫
f(y)dy = ‖f‖21.

(c) Suppose on the contrary, g and f 6= 0 a.e.. Since 0 < ‖f ∗ g‖p =

‖f‖1‖g‖p <∞, the map

Λ(h) :=

∫
h(x)F (x)dx

where F (x) = f ∗ g(x), is a well defined bounded linear map on Lq.

Moreover, substitute h = sgn(F (x))|F (x)|
p
q

‖f ∗ g‖pp = Λ(h) =

∫
h(x)F (x)dx =

∫ ∫
h(x)f(y)g(x− y)dydx

=

∫ ∫
h(x)f(y)g(x− y)dxdy

≤
∫
|f(y)|

∫
|h(x)||g(x− y)|dxdy

≤
∫
|f(y)|‖h‖q‖g‖pdy

= ‖f‖1‖g‖p‖f ∗ g‖
p
q
p

= ‖f ∗ g‖
p
q
+1

p = ‖f ∗ g‖pp

Hence all the inequality hold. There is measurable A with L(A) > 0

such that ∀y ∈ A,
∫
|h(x)||g(x − y)|dx = ‖h‖q‖g‖p. By the condition

for Holder equality to hold (for example P.64-65 of Rudin’s Real and
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Complex Analysis), we see that there are yi ∈ A, i = 0, 1 with y1 > y0

|F (x)|p

‖F‖pp
=
|g(x− yi)|p

‖g‖pp
,∀x ∈ R \Nyi

where Nyi are some measure zero sets. We see that

|g(x− y1)| = |g(x− y0)|, ∀x ∈ R \
(
Ny0 ∪Ny1).

Let T := y1 − y0 > 0, we have

|g(s+ T )|p = |g(s)|p, a.e. s ∈ R

, which is absurd since g ∈ Lp. Therefore f or g = 0 a.e..

(d) The case for p =∞ follows from the example in b) which gives equality

and nontrivial f ∗ g. For p ≥ 1, ∀ε > 0, let f(x) = e−xχ[0.∞)(x),

g(x) = χ[0.k)(x), where k is to be chosen, then ‖f‖1 = 1 and ‖g‖p = k
1
p .

It suffices to show that for sufficiently large k,

∫ (∫
f(y)g(x− y)dy

)p
dx ≥ (1− ε)pk.

In fact LHS,

∫ (∫
f(y)g(x− y)dy

)p
dx =

∫
x<0

+

∫
0≤x≤k

+

∫
k≤x

(∫
f(y)g(x− y)dy

)p
dx

= : I + II + III.

It is immediate that I = 0. Moreover III is nonegative, we may estimate

II. Since for x ≥ 0,−e−x ≥ −1

II =

∫ k

0

(∫ x

0

f(y)dy
)p
dx =

∫ k

0

(1−e−x)pdx ≥
∫ k

0

(1−pe−x)dx ≥ k−p
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where we have used the Bernoulli’s inequality. Hence

LHS ≥ II ≥ k − p ≥ (1− ε)pk

provided k is large enough.

(2) Show that for integrable f and g in Rn,

∫
f(x− y)g(y) dy =

∫
g(x− y)f(y) dy.

Solution.

Case 1. f = χE and g = χF for some measurable sets E and F .

∫
f(x− y)g(y) dy =

∫
χE(x− y)χF (y) dy =

∫
x−E

χF

= L(F ∩ (x− E)) = L((F − x) ∩ (−E))

= L((x− F ) ∩ E) =

∫
x−F

χE

=

∫
χF (x− y)χE(y) dy =

∫
g(x− y)f(y) dy.

Case 2. f , g are nonnegative measurable functions.

Pick sequences of increasing simple functions sn and tn such that

sn → f and tn → g. Then for each x, y, we have sn(x − y)tn(y) →

f(x− y)g(y). By the Monotone Convergence Theorem,

∫
f(x− y)g(y) dy =

∫
g(x− y)f(y) dy.

Case 3. f , g are integrable functions.

Consider f+, f−, g+, g− separately.

(3) A family {Qε}, ε ∈ (0, 1) or a sequence {Qn}n≥1 is called an “approximation
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to identity” if (a) Qε, Qn ≥ 0, (b)

∫
Qε,

∫
Qn = 1, and (c) ∀δ > 0,

∫
|x|≥δ
|Qε| (x) dx→ 0 as ε→ 0 or

∫
|x|≥δ
|Qn| (x) dx→ 0 as n→∞.

Verify that

(i) Py(x) =
1

π

y

x2 + y2
, x ∈ R; y → 0

(ii) Ht(x) =
1

(4πt)
n
2

e−
|x|2
4t , x ∈ Rn, t→ 0,

(iii)
1

2π
Fk(x) =


1

2πn

sin2 kx
2

sin2 x
2

, |x| ≤ π,

0, |x| > π,

, x ∈ R, k →∞

are approximations to identity.

Solution.

(i) A change of variable and the fact

∫
1

1 + x2
dx = π shows that

π

∫
Py(x) dx =

∫
y

x2 + y2
dx = π.

A simple calculation shows that for every δ > 0,

∫
|x|≥δ

|y|
x2 + y2

dy = π + arctan

(
−δ
|y|

)
− arctan

(
δ

|y|

)
→ π +

−π
2
− π

2
= 0.

(ii)

∫
Ht = 1 follows from that

∫
e−x

2

dx = 1 and n iterations using Fubini’s

Theorem. Now for any δ > 0, we claim that there exists an 1 > ε > 0

such that whenever 0 < t < ε, Ht ≤ H1 on the set A = {x ∈ Rn : |x| ≥

δ}.
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We choose an ε ∈ (0, 1) such that

0 <
−2nt log t

1− t
≤ δ2 ≤ |x|2

whenever 0 < t < ε. We can calculate that for these t,

Ht(x) ≤ H1(x)

on A. Also, Ht → 0 as t→ 0. By the Lebesgue Dominated Convergence

Theorem, since H1 ∈ L1(Rn),

lim
t→0

∫
A

Ht =

∫
A

lim
t→0

Ht = 0.

(iii) We first observe that the Fejer kernel, on [−π, π],

Fk(x) =
1

k

k−1∑
j=0

Dj(x) =
k−1∑

j=−k+1

(
1− |j|

k

)
eijx

where Dk(x) =
∑k

j=−k e
ijx. So

∫
Fk = 1. Fix δ > 0. Then there

exists a constant cδ > 0 such that for |x| ≥ δ, sin2 x

2
≥ cδ and thus

|Fk(x)| ≤ 1

ncδ
. It follows that

∫
|x|≥δ

Fk = 0.

(4) Let f be a continuous function in Rn. Then f ∗Qε → f for any approximation

to identity Qε.

Solution: Fix x0 ∈ Rn. Given any η > 0, there exists δ > 0 such that

|f(x)− f(x0)| < η
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whenever |x| < δ. Now

|f ∗Qε(x0)− f(x0)|

=

∣∣∣∣∫ (f(x0 − y)− f(x0))Qε(y) dy

∣∣∣∣
≤
∣∣∣∣∫
|y|<δ

(f(x0 − y)− f(x0))Qε(y) dy

∣∣∣∣+

∣∣∣∣∫
|y|≥δ

(f(x0 − y)− f(x0))Qε(y) dy

∣∣∣∣
≤ ε

∫
|y|<δ
|Qε(y)| dy + 2M

∫
|y|≥δ
|Qε(y)| dy

where we take M > 0 such that |f | ≤M (in order to have the integral f ∗Qε

defined, we need f to be integrable hence such M exists). It follows that

lim |f ∗Qε(x0)− f(x0)| ≤ ε

because

∫
|y|≥δ

Qε(y) dy → 0 implies

∫
|y|<δ

Qε(y) dy → 1.

(5) Improve (3) to: Let f ∈ L1(Rn) and x a Lebesgue point of f . Then f ∗

Qε(x)→ f(x) as ε→ 0.

Solution. We focus on the special case where Qε is the standard mollifier

Qε(x) = ηε(x) =
1

εn
η
(x
ε

)
,

and

η(x) =


c exp

(
1

|x|2 − 1

)
, if |x| < 1

0, if |x| ≥ 1

.

with ∫
Rn

η(x) dx = 1.
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Now,

|f ∗ ηε(x)− f(x)| ≤ 1

εn

∫
Bε(x)

η

(
x− y
ε

)
|f(y)− f(x)| dy

≤ |B1| ‖η‖L∞
1

|Bε|

∫
Bε(x)

|f − f(y)| dy

→ 0 as ε→ 0.
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