Spring 2017 MATH5012

Real Analysis II

Solution to Exercise 5

Standard notations are in force. * are for math-majors only. * are optional.
(1) Let f € LY(R') and g € LP(R), p € [1, 00].

(a) Show that Young’s inequality also holds for p = occ.

(b) Show that equality can hold in Young’s inequality when p = 1 and oo,
and find the conditions under which this happens.

(¢) For p € (1,00), show that equality in the inequality holds only when

either f or g is zero almost everywhere.

(d) For p € [1,00], show that for each ¢ > 0, there exist f € L'(R) and
g € LP(R) such that

1f*gllp > (=)l flhllglly -

Solution.

(a) Tt is obvious that fixing z, f(x — y)g(y) is integrable w.r.t. y and

I/f(x—y)g(y)dyl = /If(rv—y)g(y)!dy

< /|f(x —yYldyllgllc = [ fll1llgllec < o00,V2 €R.

Hence |[f  glloc < [[fll1ll9]los
(b) For instance if g is constant function equals to 1 and f is nonnegative,

then Vo € R

| / f(&—)g(y)dy| = | / F(x— y)dy| = £
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we see that || f*g|l« = || f]|1 and the Young’s inequality holds for p = co.
Forp=1,if f =g >0, then

15+ £l = /L/ﬂw v =iyl = [ [ #0156 = iy
/ / fly y)dady
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(c) Suppose on the contrary, g and f # 0 a.e.. Since 0 < || f x g|l, =
£ 1lllgll, < oo, the map

where F(x) = f % g(x), is a well defined bounded linear map on L¢.
Moreover, substitute h = sgn(F(z))|F(z)|

If gl = A(h) = /h@ﬁ@ﬂx://%@vwmu—w@w
—l//ﬁuﬁ@wu—yMMy
g&/uwn/muMMm—wumw
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P
= [/ llglipllf = gll5
P+l
= [l xglls = If*gll

Hence all the inequality hold. There is measurable A with £(A) > 0
such that Vy € A, [ |h(x)||g(z — y)|dz = ||h|l4llg]l,- By the condition
for Holder equality to hold (for example P.64-65 of Rudin’s Real and



Complex Analysis), we see that there are y; € A,i = 0,1 with y; > yo

F@) _ lg(e - y)l
FE ~ Tl

p
Yz e R\ N,
where N,, are some measure zero sets. We see that

lg(z —y1)| = lg(x — yo)|, Vo € R\ (N, UN,,).

Let T':=y; —yo > 0, we have
(s + T)I” = lg(s)[", ae. s €R

, which is absurd since g € £P. Therefore f or g =0 a.e..

The case for p = oo follows from the example in b) which gives equality
and nontrivial f x g. For p > 1, Ve > 0, let f(z) = e "X[0.00)(),
9(z) = Xjo.6)(z), where k is to be chosen, then || f||; =1 and ||g]|, = k.
It suffices to show that for sufficiently large k,

/ (/f(y)g(l' - y)dy)pd;c > (1 — )Pk.

In fact LHS,

/(/f(?/)!J(SU—y)dy)pdx — /x<o+/ongkJr/k§x</f(y)g($_y)dy>pd$

= I+ 1T+ 1I1.

It is immediate that I = 0. Moreover /11 is nonegative, we may estimate

II. Since for x > 0, —e™* > —1

1= / | / fw)dy) da = / ey > / (- peydr > kp



where we have used the Bernoulli’s inequality. Hence
LHS>I1I>k—p>(1—¢)Pk

provided k£ is large enough.

(2) Show that for integrable f and g in R™,

/f(x —y)g(y) dy = /9(96 —y)f(y) dy.

Solution.

Case 1. f = xg and g = xr for some measurable sets £ and F.

[ =gty = [xelo - yprwy= [ xe

z—F

= L(FN(z—E)=L(F—-z)n(-E))

~L(z-F)NE) = [ o

z—F

~ [t = opxedy = [ ata ) f)dy

Case 2. f, g are nonnegative measurable functions.
Pick sequences of increasing simple functions s, and ¢, such that
s, — fand t, — g. Then for each x,y, we have s,(x — y)t,(y) —

f(z —y)g(y). By the Monotone Convergence Theorem,
/f(ﬂc —y)g(y) dy = /g(x —y)f(y) dy.

Case 3. f, g are integrable functions.

Consider f*, f~, g*, g~ separately.

(3) A family {Q.}, € € (0,1) or a sequence {Q,},, is called an “approximation



to ldentlty77 lf (a) QE; Qn Z 0, (b) /QE7 /Qn = 17 and (C) v5 > O7
/ |Qc| (x)dz — 0 as e — 0 or
|| >

/ |Qn| () dz — 0 as n — oo.
|z|=6

Verify that

Ly
) Pfe) = 3 Y w e Riy >0
1 ik
(il) Hi(x) = ¥ t)neut’ reR" t—0,
7t)2
1 sin® & 2] <
1 o . T ) r >,
(iii) Q—Fk(:c)— 2mn sin” § ,tE€R k— o0
T
0, |z| > T,

are approximations to identity.

Solution.

dxz = 7 shows that

2

1
(i) A change of variable and the fact / T

T

Y
W/Py(ﬁ)dil?:/mdl':’ff

A simple calculation shows that for every § > 0,

wl AN 0
5 5 4y = ™+ arctan arctan
w2577 + Y ] |yl

St — 220
T+ ——==0.
2 2

(ii) / H; =1 follows from that / ¢~ dz = 1 and n iterations using Fubini’s
Theorem. Now for any 6 > 0, we claim that there exists an 1 > ¢ > 0

such that whenever 0 < ¢t < ¢, H; < Hy on the set A ={z € R": |z| >

5}.



(iii)

We choose an € € (0, 1) such that

—2ntlogt

0<
1—-1

<6 < af
whenever 0 < t < . We can calculate that for these t,
Ht<ﬂj‘> < H1 (SC)

on A. Also, H; — 0 as t — 0. By the Lebesgue Dominated Convergence
Theorem, since H; € L'(R"),

=0 4 At—)O

We first observe that the Fejer kernel, on [—7, 7],

El

ki;Dj(I‘) = ’i (1 _ %) i

j=—k+1

where Dy (z) = Z?:—k e’*. So /Fk = 1. Fix § > 0. Then there

x
exists a constant ¢s > 0 such that for |z| > §, sin® 5 > ¢s and thus

1
|Fy(x)] < —. It follows that / F, =0.
neés lz|>8

(4) Let f be a continuous function in R". Then f*Q. — f for any approximation

to identity Q..

Solution: Fix zy € R™. Given any 1 > 0, there exists § > 0 such that

|[f(x) = fzo)| <



whenever |z| < 6. Now

/| 0= = ) Q.

<: / Q) dy+2M [ |Q.(y)] dy
ly|<d

ly|>d

where we take M > 0 such that |f| < M (in order to have the integral f Q.
defined, we need f to be integrable hence such M exists). It follows that

lim | f % Qc(z0) — f(z0)| < €

because Q:(y) dy — 0 implies Q-(y)dy — 1.

ly|>6 ly|<é
Improve (3) to: Let f € L'(R") and x a Lebesgue point of f. Then f x
Q:(z) — f(x) as e — 0.

Solution. We focus on the special case where (), is the standard mollifier

1 T
QE<I> - 775(1‘) - g_” <g) ’
and
1 .
cexp (2—) , if |zl <1
n(x) = 2" =1 :
0, if |z] >1
with

/nn(x) dr =1.



Now,

RUCECIEr Y K ( ‘y) () — £(2)] dy

en €
1
< Bl gy [ 17—l dy

—0 ase—0.



